
11 - 15 DECEMBER  ANTWERP  BELGIUM

1

www.javapolis.com 2

Why So Slow?

Debunking Speculative Tuning

Heinz Kabutz
Java Specialist
Maximum Solutions
http://www.cretesoft.com

Kirk Pepperdine
Performance Specialist
Kodewerk Ltd.
http://www.kodewerk.com

11 - 15 DECEMBER  ANTWERP  BELGIUM

3

Our Typical Customer

Customer JoGoSlo Ltd calls us in desperation
 Millions of $$$$ invested
 Users complain about poor performance

• Customers are starting to abandon the project
Developers in a panic
 6 man months already spent “tuning” with no results
 Can almost reproduce the problem
 Still have some ideas of what to do
 But, management has lost confidence

We have 5 days to diagnose problem and propose fix

11 - 15 DECEMBER  ANTWERP  BELGIUM

4

Tuning Tool for Managers

11 - 15 DECEMBER  ANTWERP  BELGIUM

5

Tuning Tool for Engineers – “The Box”

11 - 15 DECEMBER  ANTWERP  BELGIUM

6

Heinz Kabutz

Author of The Java Specialists’
Newsletter
Sun Java Champion
http://www.cretesoft.com
Lives in Greece
Consults and trains companies about Java

11 - 15 DECEMBER  ANTWERP  BELGIUM

7

Kirk Pepperdine

Engaged in performance tuning world wide.
Co-author of
www.javaperformancetuning.com
Editor www.theserverside.com
Sun Java Champion
Speaks frequently about performance tuning
http://www.kodewerk.com

11 - 15 DECEMBER  ANTWERP  BELGIUM

8

Topics

Dynamic nature of systems
Measure don’t guess
People
Hardware/OS
JVM
Application
External systems
Putting it all together

www.javapolis.com 9

Time to Setup

11 - 15 DECEMBER  ANTWERP  BELGIUM

10

Time to Setup TipsDB

Download from http://www.cretesoft.com/outgoing/
javapolis.zip
Set path to your JDK in the setenv.bat
Go into tipsdb directory
Call startDB.bat
Call createDB.bat
Call appserverStart.bat
Connect to http://localhost:8080/tips/wildcard
Connect to http://localhost:8080/tips/keyword

11 - 15 DECEMBER  ANTWERP  BELGIUM

11

Dynamic Nature of Systems

 Knowing what to measure and how to
measure it makes a complex world much
less so

Steven D. Levitt
Stephen J. Dubner

Authors of Freakonomics

11 - 15 DECEMBER  ANTWERP  BELGIUM

12

Dynamic Nature of Systems

Performance tuning is a complex task
 Need to reverse engineer complex systems
 Need right view of the system

• Most useful view comes from measurements
We will take introductory look at
 What to measure
 How to measure
 How to understand the measurements

11 - 15 DECEMBER  ANTWERP  BELGIUM

13

Importance of the Environment

Need to understand all elements in the environment
Changing elements of a system can change the
dynamics of that system
 E.g. different users, CPUs, network

11 - 15 DECEMBER  ANTWERP  BELGIUM

14

Importance of Tooling

Tooling allows us to see what is otherwise invisible

11 - 15 DECEMBER  ANTWERP  BELGIUM

15

Importance of process

Process or ways of investigating the problem can
change or hide the problem
Systematic investigation

11 - 15 DECEMBER  ANTWERP  BELGIUM

16

Holistic View

11 - 15 DECEMBER  ANTWERP  BELGIUM

17

Dynamic Nature of Systems

Systems by their nature are dynamic
 Mix of static and dynamic elements

Static aspects of a Java based system
 Not bottlenecks onto themselves
 Hardware/OS

• Defines the physical constraints of the system
 Java Virtual Machine

• Primarily a translation layer
 Application

• Expression of what is needed to be done

11 - 15 DECEMBER  ANTWERP  BELGIUM

18

Dynamic Nature of Systems

Dynamic aspects of a system
 People

• Abstraction for system drivers
– Batch processing
– External systems

• create flows through the system
– maybe beyond the capacity of the system
– Can put pressure on pinch points (or bottlenecks) in

the system
How does this work?

11 - 15 DECEMBER  ANTWERP  BELGIUM

19

Resource Contribution

11 - 15 DECEMBER  ANTWERP  BELGIUM

20

Forward Propagation of Actions

People drive the application
Application drives the JVM
 Direct consequence of what the people are asking
 And how application was coded

JVM Drives the hardware
 Direct consequence of what the application is asking
 And how JVM was coded and configured

Hardware executes instructions
 Limited by speed and capacity

11 - 15 DECEMBER  ANTWERP  BELGIUM

21

Backward Propagation of Problems

Problem: hardware lacks capacity or is slow
 people experience poor response times

Problem: JVM is poorly configured
 People experience poor response times

Problem: Application suffers from contention
 People experience poor response time

Our starting point; people are experiencing poor
response times
How do we start our investigation?
 It is at this point JoGoSlo ran into trouble

11 - 15 DECEMBER  ANTWERP  BELGIUM

22

Performance Anti-pattern: Shot in the Dark

Developers dove into the code
 Found many ugly bits

• Interactions with database
 Wasted valuable time fixing them

• None of the ugly code bits had any consequence on
performance

 Ignored key pieces of information
• DBA reported millisecond response times
• System sometimes recovered

Developers started guessing at the cause of the problem

11 - 15 DECEMBER  ANTWERP  BELGIUM

23

Solution to Shot in the Dark

Measure
Don’t Guess

11 - 15 DECEMBER  ANTWERP  BELGIUM

24

Measure Don’t Guess

Solid Measurements
 Show you what needs to be done
 Focus efforts
 Facilitate planning
 Instill confidence
 Deflect finger pointing

11 - 15 DECEMBER  ANTWERP  BELGIUM

25

Measure Don’t Guess

Review all performance requirements
Construct a realistic test environment
Use “The Box” as a roadmap
Tackle one layer at a time
Start with the people
Start the investigation with the hardware
 Work up the stack

Let the user experience guide all decisions

11 - 15 DECEMBER  ANTWERP  BELGIUM

26

Investigative W5

Five questions asked by investigators:
 Who ?

• Who (which resource) is exhibiting the problem?
 What ?

• Observation: what do the users see?
 Where ?

• Which layer is exhibiting the problem?
 When ?

• Are there any peculiarities about when the problems occur?
 Why ?

• An explanation (hypothesis) of the observation from system
perspective

11 - 15 DECEMBER  ANTWERP  BELGIUM

27

Actors in the Performance Profile

What

Where

Who

11 - 15 DECEMBER  ANTWERP  BELGIUM

28

Simple Process

Form a hypothesis from observed behavior
Devise a test to validate the hypothesis
Measure for effect
Make changes
Test for desired effect
Repeat until performance profile is in tolerance

11 - 15 DECEMBER  ANTWERP  BELGIUM

29

Provide the dynamics for the system
 Use system in their own way
 Use the system at their own leisure

Need to capture the dynamics
Usage pattern
 Sequence of user actions
 Timing information

• Pauses between actions
• Time of day for activity

11 - 15 DECEMBER  ANTWERP  BELGIUM

30

People

System utilization is an aggregate of all usage patterns
 How system copes with the aggregation defines its

performance profile
Stress testing
 Use mix of usage patterns to load the system

• Ideally driven by a load testing tool
 Measure system activity

• Careful use of a selected tools
 Must be run against a production like environment

Goal: understand the user experience

11 - 15 DECEMBER  ANTWERP  BELGIUM

31

Stress Testing Environment

Production environment?
 Not desirable and usually not an option

Test environment should
 Perfectly resemble your production environment

• Data sizes, memory sizes, cache sizes, disk
speeds, network speeds, should be the same

 Be isolated
– Introduce other systems/processes in a

controlled fashion

11 - 15 DECEMBER  ANTWERP  BELGIUM

32

Stress Testing Environment

Caching
 Protects your application from an underlying slower

technology
 Reduces response times
 May reduce the effects of I/O waits

May need to simulate external systems
 Do this with care

Don’t extrapolate!
 Difficult to know when you will hit the wall
 E.g. Application using 15Mbits is moved from a gigabit

to 10Megabit network
• Shifts the bottleneck

11 - 15 DECEMBER  ANTWERP  BELGIUM

33

Stress Testing

Stress testing tool feature list
 Easily scripted to support many users doing many

different things
 Supports randomization of inputs
 Throttles request rates
 Randomized request rates
 Reports on response times (from clients perspective)
 Vary loads
 Generate high loads

Introduced Apache JMeter to JoGoSlo

11 - 15 DECEMBER  ANTWERP  BELGIUM

34

Apache JMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

35

Apache JMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

36

Apache JMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

37

Apache JMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

38

Apache JMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

39

Apache JMeter Simple Setup

Setup proxy
Use browser to generate desired traffic
Add in timers
Randomize input
Add in listeners
Configure ThreadGroup properties
Run load test

www.javapolis.com 40

Practical

11 - 15 DECEMBER  ANTWERP  BELGIUM

41

Instructions

Start up apachejmeter.bat
We’ll skip the proxy setup. Load mixed.jmx JMeter plan
Add random delay that ranges between 1 and 4 seconds
between calls for both keyword and wildcard
Add in a listener of your choice
Use 2 threads (concurrent users)
 Don’t forget to set the repeat count

Run and watch

11 - 15 DECEMBER  ANTWERP  BELGIUM

42

Hardware is our physical constraint
If we don’t have enough
 Get more
 Reduce utilization of what we have

• Strength reduction (algorithms)
• Trade one resource for another

– Caching trades memory for I/O
Judge utilization in relation to the task at hand
 Reading 1 megabyte from disk should not stress a

modern I/O channel
• Are you really reading 1 meg?

11 - 15 DECEMBER  ANTWERP  BELGIUM

43

Measuring Hardware Unix

System activity
 Maintained in kstat structures by the kernel
 Collection of counters

Reported on by command line tools
 Includes vmstat, mpstat, iostat
 Values reported as activity since last call
 Provides instantaneous view on how hardware is

coping with load

11 - 15 DECEMBER  ANTWERP  BELGIUM

44

Measuring Hardware Windows

System activity
 Maintained in registry
 Collection of counters

Reported on by taskmgr and perfmon
 Graphical windows on system performance
 perfmon is configurable
 Taskmgr has few configurations

• You can (and should) turn on reporting of system
time (CPU)

11 - 15 DECEMBER  ANTWERP  BELGIUM

45

CPU

High utilization is easily measurable
• vmstat (Unix) or taskmgr (Windows)

Different types of utilization
 Application
 JVM
 System/OS

11 - 15 DECEMBER  ANTWERP  BELGIUM

46

Application

Source
 Heavy workload

• Add CPU
 Remove processes from machine
 Inefficient algorithms

• Use method profiler to identify bottlenecks.
– prof
– hprof
– NetBeans (JFluid)

11 - 15 DECEMBER  ANTWERP  BELGIUM

47

Application Profiling

JVMTI interface
 New to 1.5
 Combination of old JVMPI and JVMDB interfaces
 Supported by –Xrunyourlib:parameters

• Loads yourlib (dll or so)
• Initializes with parameters

11 - 15 DECEMBER  ANTWERP  BELGIUM

48

Application Profiling

11 - 15 DECEMBER  ANTWERP  BELGIUM

49

Application Profiling

-Xprof
 Original execution profiler
 Sampling profiler

• Adds 1 to a counter for each method when it is found at the
top of stack

• Timings are inclusive
 Reports on a thread bases
 Dumps report to screen when thread dies

11 - 15 DECEMBER  ANTWERP  BELGIUM

50

Application Profiling

-Xrunhprof
 Original heap profiler
 Extended for thread and execution profiling
 Built off of JVMTI interface but no wire protocol
 Much more data than prof

• Best viewed with a profiling tool (HPJMeter)

11 - 15 DECEMBER  ANTWERP  BELGIUM

51

Java Virtual Machine

Heavily threaded (measure with vmstat)
 Runnable (r) queue consistently 2x number of CPUs
 Stresses scheduler
 Introduce thread pooling to limit activity
 Reduce number of threads in current pools

Java heap management
 Monitor gc with –verbose:gc flag
 View output with HPJTune

11 - 15 DECEMBER  ANTWERP  BELGIUM

52

Operating System

Context switching
 Threads not completely using quantum
 I/O
 Lock acquisition
 Interrupt handling

Memory management
 non-zero scan rates (sr) for more than a few seconds

at a time
• OS is thrashing

11 - 15 DECEMBER  ANTWERP  BELGIUM

53

Operating System

11 - 15 DECEMBER  ANTWERP  BELGIUM

54

Memory

High utilization is easily measurable
 memstat (Unix) or taskmgr (Windows)
 Can look like high CPU utilization

Real memory
Virtual memory
 An outdated optimization

Ideally we want to pin JVM into real memory
 Eliminate paging
 Reduce memory utilization
 Add memory

11 - 15 DECEMBER  ANTWERP  BELGIUM

55

Disk and Network I/O

Heavy utilization will most likely prevent application from
fully utilizing CPU
Source (iostat)
 Reading/writing large data sets or many network calls

• Use counters to calculate rates
• Use I/O channel specs to understand capacity
• For disk, introduce buffering in hardware or application

– E.g. Databases use paging
• For network introduce caching
• Bulk up operations

Wrap I/O calls with timer

11 - 15 DECEMBER  ANTWERP  BELGIUM

56

JDBC Monitoring

Common problem is interactions with database
 Can measure activity using JDBC interceptor

P6Spy looks like a JDBC driver
 Logs all JDBC calls
 Logs can be viewed with IronEye

11 - 15 DECEMBER  ANTWERP  BELGIUM

57

IronEye

11 - 15 DECEMBER  ANTWERP  BELGIUM

58

JAMon 2.2

Specify JAMon JDBC driver
Can be viewed using supplied WAR file
To bind it in without code or config changes:
 http://www.cretesoft.com/archive/newsletter.do?issue=136

www.javapolis.com 59

Practical

11 - 15 DECEMBER  ANTWERP  BELGIUM

60

Instructions

Make sure Tips is running
Use 30 threads (concurrent users)
 Don’t forget to set the repeat count

Run and watch the hardware
What do we see?
What do we do next?

11 - 15 DECEMBER  ANTWERP  BELGIUM

61

If hardware is able to cope with the load, move to
investigate JVM
Threading
 Maybe hints of problem when investigating hardware
 Examine threading with kill –3 or ctrl-break

• Dumps activity to console
• Look for many busy threads

 Control level of threading using thread pooling
• Traffic calming

11 - 15 DECEMBER  ANTWERP  BELGIUM

62

Java Heap Memory

Java Virtual Machine C/C++ process
 Structure depends upon OS
 Shared text
 Stack
 Heap

• Java Heap allocated from process heap
Java object allocated from Java heap space
Java heap space managed by garbage collection
 Object that are no longer reachable will be collected
 Memory that is no longer referenced will be returned

to the free list

11 - 15 DECEMBER  ANTWERP  BELGIUM

63

Java Heap Space

C struct defines Java object
 OOP
 Contains references to other object

• Depends on the class declaration

public class A {
 public Object x;
 public Object y;
}

struct OOP {
 int refCount;
 byte *refs;
} OOP, *OOP;
…
refs[0] = x;
refs[1] = y;

11 - 15 DECEMBER  ANTWERP  BELGIUM

64

Java Heap Space

Java heap maintains a references to OOP
 Reference to all object maintained in OOP table
 Root objects are at the top of object graphs

• Define live objects
Object not reachable from GC roots will be collected
 Three step process known as Mark and Sweep:

• Traverse OOP table and clear mark bit
• Traverse object graphs starting at GC roots and set mark bit
• Sweep across OOP table de-allocating OOP structures

11 - 15 DECEMBER  ANTWERP  BELGIUM

65

Mark & Sweep GC

11 - 15 DECEMBER  ANTWERP  BELGIUM

66

Mark & Sweep GC

11 - 15 DECEMBER  ANTWERP  BELGIUM

67

Mark & Sweep GC

Triggered on allocation failure
 new Object(); fails

Needs exclusive access to all of heap
 Cannot share heap with application threads
 Concurrency issue known as “stop-the-world” GC

Single threaded
Must manage entire heap space
 Large heaps == long pauses

11 - 15 DECEMBER  ANTWERP  BELGIUM

68

Mark & Sweep GC Optimizations

When GC runs only 1 CPU is hot
 Develop multi-threaded GC algorithms
 Still have pause times but hopefully shorter

Application pauses
 Develop concurrent GC algorithms
 Application and GC can run together
 Reduced contention == reduced pause time
 Higher overhead (ie trading CPU for shorter pause)

11 - 15 DECEMBER  ANTWERP  BELGIUM

69

Mark & Sweep GC Optimizations

Most Objects live for less than 100 µs or for a long time
 IBM defines pinned clusters, wilderness (not so

generational)
 Sun/HP/JRocket added Generation Spaces

Generational spaces
 Choose a different collector for young and old
 Collect young first
 Collect old only when there will not be enough room

for old objects

11 - 15 DECEMBER  ANTWERP  BELGIUM

70

Object Lifespan

11 - 15 DECEMBER  ANTWERP  BELGIUM

71

Sun Generational Spaces

11 - 15 DECEMBER  ANTWERP  BELGIUM

72

Generational Spaces

Heap sizing
 Can size generational spaces using ratios or absolute

sizes
-Xmx defines maximum size of entire heap
-XX:MaxNewSize=<N>
-XX:NewRatio
 Ratios: 8 for -client and 2 for -server

-XX:SurvivorRatio
-XX:PermSize=<size>
-XX:MaxPermSize=<size>
Old space is what is left over

11 - 15 DECEMBER  ANTWERP  BELGIUM

73

Survivor Spaces

e.g. new size = 2M, Survivor ratio = 8
Eden = 2M – 2M / (8 + 2) * 2
 = 2048K – 204.8K
 = 1843.2K
Each Survivor Space = 102.4K

11 - 15 DECEMBER  ANTWERP  BELGIUM

74

Monitoring GC

-verbose:gc prints one log record for every GC event
 -Xloggc:file

Log entries provides a picture on how
 your application is behaving
 GC is coping

Want to calculate GC throughput
Want to find long GC pause times

11 - 15 DECEMBER  ANTWERP  BELGIUM

75

GC Throughput

“Time application is suspended by GC” divided by “total
run time”
E.g. 5 minutes of a 20 minute runtime is spent
performing GC
25% efficiency
GC bottleneck
Requires many records to calculate
 Better tooling

GCViewer (TagTram)
HPJTune (HP)

11 - 15 DECEMBER  ANTWERP  BELGIUM

76

Tagtram GCViewer

11 - 15 DECEMBER  ANTWERP  BELGIUM

77

HP JTune

11 - 15 DECEMBER  ANTWERP  BELGIUM

78

HP JTune Heap Usage After GC

11 - 15 DECEMBER  ANTWERP  BELGIUM

79

HP JTune Pause Time

11 - 15 DECEMBER  ANTWERP  BELGIUM

80

Heap/GC Tuning

Use graphics to decide how to tune memory
 Let the user experience to temper your choices

Strategy: eliminate full GC
 Adjust size of total heap and survivor spaces
 Tune other parameters as needed

Strategy: eliminate long pauses
 Use Parallel (if multi-cored)
 Use concurrent if you can tolerate overhead

11 - 15 DECEMBER  ANTWERP  BELGIUM

81

Heap/GC Tuning

Tuning GC cannot eliminate
 Extremely high rates of churn
 Temporal or permanent memory leaks

Need to fix the problem in the code
 Use a memory profiler to direct your search

-Xrunhprof:heap=all
 Dumps heap when JVM exits
 Dumps with kill -3 or ctrl-break

-XX:+HeapDumpOnOutOfMemoryError
 New for latest version of 1.6, 1.5, and 1.4

11 - 15 DECEMBER  ANTWERP  BELGIUM

82

Heap Dump

Contains enough information to reconstruct a picture of
memory
Picture contains references to all objects
 Dead objects held by OOP table
 Live objects

Call GC twice before dumping heap
Data volume and complexity calls for tooling
 HPJMeter

11 - 15 DECEMBER  ANTWERP  BELGIUM

83

HPJMeter

Read hprof dump
 Limited to single snapshot

Provides rudimentary views of heap
 Live object numbers and sizes
 Dead objects numbers and sizes

Can guess at memory leaks
 Single snapshot analysis is limited
 Can be good enough if you are methodical

Memory leaks usually are found in collections
 Strategy: focus on collections

11 - 15 DECEMBER  ANTWERP  BELGIUM

84

HPJMeter Live Object View

11 - 15 DECEMBER  ANTWERP  BELGIUM

85

HPJMeter Leak Detection

www.javapolis.com 86

Practical

11 - 15 DECEMBER  ANTWERP  BELGIUM

87

Instructions

Let’s profile heap with JVM switch –Xrunhprof:heap=all
 For fun, add switch –Xloggc:gc.log

Restart application server and run JMeter plan
Confirm that there is a memory leak with HPJTune
 Open gc.log
 Look at “Heap Usage After GC”
 Look at “GC Duration”

Open HPJMeter and find the leak
 You may need to shut down everything first

11 - 15 DECEMBER  ANTWERP  BELGIUM

88

The only problem left is lock contention
Characterized by inability to utilize CPU
 Similar to I/O bound (call to external system)

High system time (% of total)
 Locks are a kernel resource

Find by performing a thread dump (kill -3)
 For live lock you may need many thread dumps

Techniques to educe lock contention is an emerging
topic

11 - 15 DECEMBER  ANTWERP  BELGIUM

89

If you haven’t found anything
 Re-investigate the people

• Are they really doing what you think they are doing?
• Read logs
• Visit the floor and watch
• Re-do usage patterns

– Compare JMeter scripts with real life
• Re-test

 Validate that QA == Production
• Even the smallest difference can hide the problem

11 - 15 DECEMBER  ANTWERP  BELGIUM

90

JoGoSlo Reload

Introduced Apache JMeter
Introduced HPJTune to monitor memory
Confirmed memory leak hypothesis
 Resting the application allowed application to recover
 Recovery was tied to HttpSessionState timeout

• Developers were working on persistence framework
Isolated memory leak to single usage pattern
 Filtered off a vast majority of the application
 Identified, fixed and re-tested with-in budget

11 - 15 DECEMBER  ANTWERP  BELGIUM

91

Summary

Systems are dynamic, code is static
Be methodical
Review performance requirements
Prepare stress testing environment
Define Usage patterns
Investigate hardware, JVM, and Application
Use measurements from tooling to direct your efforts
Let the user experience guide your decisions

11 - 15 DECEMBER  ANTWERP  BELGIUM

92

Measure
Don’t
Guess

www.javapolis.com 93

Q&A

11 - 15 DECEMBER  ANTWERP  BELGIUM

94

Thank you for your attention!

