b

JAVAPOLIS

11 - 15 DECEMBER R ANTWERP RBELGIUM

I\\ <8

DY,
Adobe . Red Hat ORACI—E,

_F'D!_IS

Debunking Speculative Tuning

Heinz Kabutz Kirk Pepperdine
Java Specialist Performance Specialist
Maximum Solutions Kodewerk Ltd.

http://www.cretesoft.com http://www.kodewerk.com

17-(‘71

Our Typical Customer

@ Customer JoGoSlo Ltd calls us in desperation
Millions of $$$$ invested
Users complain about poor performance
« Customers are starting to abandon the project
@ Developers in a panic
6 man months already spent “tuning” with no results
Can almost reproduce the problem
Still have some ideas of what to do
But, management has lost confidence
@ We have 5 days to diagnose problem and propose fix

e e ‘b

JAVAPOLIS JAVAPOLIS

Tuning Tool for Managers

4

i
\LE‘ ‘
- 11 W@

11 -
JAVAPOLIS JAVAPOLIS

A
=)

Tuning Tool for Engineers — “The Box”

People
Application
JVM
Hardware

{ 5
sthry b
- 11.- 15 DECEMBER = ANTHERE Lo TN (2 6
JAVAPOLIS JAVAPOLIS

Heinz Kabutz

@ Author of The Java Specialists’
Newsletter

@ Sun Java Champion
o http://www.cretesoft.com
@ Lives in Greece
, . . JAVATM
()
Consults and trains companies about Java CHAMPIONS

JAVAPOLIS JAVAPOLIS

Kirk Pepperdine

3

Co-author of
www.javaperformancetuning.com

Editor www.theserverside.com JRvATH
Sun Java Champion CHAMPIONS
Speaks frequently about performance tuning

http://www.kodewerk.com

@ Engaged in performance tuning world wide. g %

2 3 D D

JAVAPOLIS JAVAPOLIS

Topics

Dynamic nature of systems
Measure don’t guess
People

Hardware/OS

JVM

Application

External systems

Putting it all together

2 93 3 2 3 2 9 I

ke "y
s ob

JAVAPOLIS JAVAPOLIS

b

JAVAPOLIS

11 - 15 DECEMBER BEANTWERP EBELGIUM

www.javapolis.com

Time to Setup TipsDB

@ Download from http://www.cretesoft.com/outgoing/
javapolis.zip

Set path to your JDK in the setenv.bat

Go into tipsdb directory

Call startDB.bat

Call createDB.bat

Call appserverStart.bat

Connect to http://localhost:8080/tips/wildcard
Connect to http://localhost:8080/tips/keyword

2 3 3 2 3 3 D

10
: 6

JAVAPOLIS JAVAPOLIS

Dynamic Nature of Systems

Knowing what to measure and how to
measure it makes a complex world much
less so

Steven D. Levitt
Stephen J. Dubner
Authors of Freakonomics

11
: 6

JAVAPOLIS JAVAPOLIS

Dynamic Nature of Systems

@ Performance tuning is a complex task
Need to reverse engineer complex systems

Need right view of the system
 Most useful view comes from measurements

@ We will take introductory look at
What to measure
How to measure
How to understand the measurements

12
: 6

JAVAPOLIS JAVAPOLIS

Importance of the Environment

@ Need to understand all elements in the environment

@ Changing elements of a system can change the
dynamics of that system

E.g. different users, CPUs, network

13
: 6

JAVAPOLIS JAVAPOLIS

Importance of Tooling

@ Tooling allows us to see what is otherwise invisible

L 14
. &

JAVAPOLIS JAVAPOLIS

Importance of process

@ Process or ways of investigating the problem can
change or hide the problem

© Systematic investigation

15
: 6

JAVAPOLIS JAVAPOLIS

Holistic View

| Peopie
Application

JVM

Ly 16
: Mggm M
JAVAPOLIS JAVAPOLIS

Dynamic Nature of Systems

© Systems by their nature are dynamic Pepplg
Mix of static and dynamic elements Application

o Static aspects of a Java based system JVM
Not bottlenecks onto themselves Hardware
Hardware/OS

» Defines the physical constraints of the system

Java Virtual Machine
« Primarily a translation layer

Application

» Expression of what is needed to be done

17
: 6

JAVAPOLIS JAVAPOLIS

Dynamic Nature of Systems

@ Dynamic aspects of a system People
People Application
« Abstraction for system drivers JVM
— Batch processing
— External systems Hardwa re

« create flows through the system
— maybe beyond the capacity of the system

— Can put pressure on pinch points (or bottlenecks) in

the system
o How does this work?

“y 11-15 . .
JAVAPOLIS

‘2

JAVAPOLIS

Resource Contribution

Usage Patterns,
People Rates

|

R LI
Ap pl |Ca£| on tC?)Cntention
Threads,
JVM : 1\Merriua:)rf;
Hardware 5 Newor
&P T . ‘06

JAVAPOLIS JAVAPOLIS

Forward Propagation of Actions

@ People drive the application

@ Application drives the JVM
Direct consequence of what the people are asking
And how application was coded

@ JVM Drives the hardware
Direct consequence of what the application is asking
And how JVM was coded and configured

@ Hardware executes instructions
Limited by speed and capacity

20
: 6

JAVAPOLIS JAVAPOLIS

Backward Propagation of Problems

@ Problem: hardware lacks capacity or is slow
people experience poor response times
® Problem: JVM is poorly configured
People experience poor response times
@ Problem: Application suffers from contention
People experience poor response time

@ Qur starting point; people are experiencing poor
response times

¢ How do we start our investigation?
It is at this point JoGoSIlo ran into trouble

21
: 6

JAVAPOLIS JAVAPOLIS

Performance Anti-pattern: Shot in the Dark

@ Developers dove into the code
Found many ugly bits

* |nteractions with database

Wasted valuable time fixing them

* None of the ugly code bits had any consequence on
performance

Ignored key pieces of information
» DBA reported millisecond response times
« System sometimes recovered

@ Developers started guessing at the cause of the problem

22
: 6

JAVAPOLIS JAVAPOLIS

Solution to Shot in the Dark

Measure
Don’t Guess

JAVAPOLIS

Measure Don’'t Guess

@ Solid Measurements
Show you what needs to be done
Focus efforts
Facilitate planning
Instill confidence
Deflect finger pointing

“y 11-15 . .
JAVAPOLIS

‘b

JAVAPOLIS

Measure Don’'t Guess

Review all performance requirements

Construct a realistic test environment

Use “The Box” as a roadmap

Tackle one layer at a time

Start with the people

Start the investigation with the hardware
Work up the stack

@ Let the user experience guide all decisions

3 > 3 2 I3 D

25
: 6

JAVAPOLIS JAVAPOLIS

Investigative W5

© Five questions asked by investigators:

Who ?
« Who (which resource) is exhibiting the problem?
What ?
* Observation: what do the users see?
Where ?
« Which layer is exhibiting the problem?
When ?
* Are there any peculiarities about when the problems occur?
Why ?
* An explanation (hypothesis) of the observation from system
perspective

26
: 6

JAVAPOLIS JAVAPOLIS

Actors in the Performance Profile

What-_

/
Where

\

JAVAPOLIS

People

Usage Patterns,

Rates . D

n Lock
Contentiom—

N

Applicatio
! |

i

JVM

Threads,——
Memory

\
—— Who

!
Hardware

////
CPU; Memory, /

Disk. Network -

‘b

JAVAPOLIS

Simple Process

Form a hypothesis from observed behavior
Devise a test to validate the hypothesis
Measure for effect

Make changes

Test for desired effect

Repeat until performance profile is in tolerance

2 22 2 2 2

28
‘s

JAVAPOLIS JAVAPOLIS

Usage Patterns,
People Rates

@ Provide the dynamics for the system
Use system in their own way
Use the system at their own leisure
@ Need to capture the dynamics
@ Usage pattern
Sequence of user actions
Timing information
» Pauses between actions
« Time of day for activity

29
‘s

JAVAPOLIS JAVAPOLIS

People

@ System utilization is an aggregate of all usage patterns

How system copes with the aggregation defines its
performance profile
@ Stress testing
Use mix of usage patterns to load the system
« |deally driven by a load testing tool
Measure system activity
 Careful use of a selected tools
Must be run against a production like environment
@ Goal: understand the user experience

30
: 6

JAVAPOLIS JAVAPOLIS

Stress Testing Environment

@ Production environment?
Not desirable and usually not an option
@ Test environment should

Perfectly resemble your production environment

» Data sizes, memory sizes, cache sizes, disk
speeds, network speeds, should be the same

Be isolated

— Introduce other systems/processes in a
controlled fashion

31
: 6

JAVAPOLIS JAVAPOLIS

Stress Testing Environment

@ Caching
Protects your application from an underlying slower
technology
Reduces response times
May reduce the effects of I/O waits
@ May need to simulate external systems
Do this with care
@ Don’t extrapolate!
Difficult to know when you will hit the wall

E.g. Application using 15Mbits is moved from a gigabit
to 10Megabit network

« Shifts the bottleneck

32
: 6

JAVAPOLIS JAVAPOLIS

Stress Testing

© Stress testing tool feature list

Easily scripted to support many users doing many
different things

Supports randomization of inputs
Throttles request rates
Randomized request rates
Reports on response times (from clients perspective)
Vary loads
Generate high loads
@ Introduced Apache JMeter to JoGoSlo

33
: 6

JAVAPOLIS JAVAPOLIS

Apache JMeter

Apache JMeter

File Edit Run Options Help

o
= -
4a TestPlan i
® (| WorkBench | HTTP Proxy Server
[HTTP Proxy Server Name: [HTTP Proxy Server
| Port: 3090
‘| [Patterns to Include
Patterns to Include
| add || Delete
~Patterns to Exclude

Patterns to Exclude

Add || Delete |

Start H Stop H Restart ‘

34

JAVAPOLIS

JAVAPOLIS

Apache JMeter

Apache JMeter

File Edit Run Options Help

@ 4 TestPian

B Thread Growp Thread Group
@ [I£] workBench

D HTTP Proxy Server

Name: [Script1

~Thread Delay Properties
Number of Threads: I1

Ramp-Up Period (in seconds): |1

|
Loop Count: { [v] Forever
[_] Scheduler

1
§
n;!@‘(&ﬂ

‘ 35

JAVAPOLIS

JAVAPOLIS

Apache JMeter

9 & TestPlan
¢ E‘ Thread Group

9 £¥ HTTP Request
ﬁﬂ Browser-derived headers

448 Widcard parameters
s / lﬂupsmeyword
ﬂﬁ Browser-derived headers
w Keyword parameters
| @ Gaussian Random Timer
WorkBench
8 HTTP Proxy Server "

JAVAPOLIS > UEEEEEEE R AR e JAVAPOLIS

Apache JMeter

File Edit Run Options Help

9 & TestPlan
T E‘ Thread Group
9 /7 HTTP Request

ﬂ{t Widcard parameters

+ / hoaroraa

ﬂg Keyword parameters
@ Gaussian Random Timer
T WorkBench
g HTTP Proxy Server

448 Browser-derived headers | °

ﬂg Browser-derived headers

HTTP Request

Name: |tipsikeyword |

~Web Server

Server Name or IP: |Ioca|host |

Port Number: (3030 |
~HTTP Request

Protocol: |http Method: @ GET () POST
Path: |tipsikeyword

[] Redirect Automatically [_]| Follow Redirects Use Keepdlive

Send Parameters With the Request:

Name: Value Encode? Include Equals?

keyword ${keyword}
l Add I | Delete |
Send a File With the Request:
Filename: | | l Browse... |
Parameter Name: | |
MIME Type: | |
~Optional Tasks

[] Retrieve &ll Embedded Resources from HTML Files [_| Use as Monitor

JAVAPOLIS

JAVAPOLIS

Apache JMeter

B Apache et DEX

File Edit Run Options Help

=
@ 4 TestPlan
@ B scrint Aggregate Report
©- /' fappl keyword Name: IAggregate Report
© /% japp1 keyword | Write All Data to a File
g ? ;:ZS e | Fiename | | | Browse.. | 7] LogEmors Onty
¥l Resits Tree URL | Count | Average | Mn | Max | Emor% | Rate
View Results in Table “Yfapp1ikeyword 6 647 0 1302/0.00% 1.5/sec
Graph Full Results “Jfappfwildcard 6 40 10 50/0.00% 2.1/sec
m TOTAL 12 343 0 1302/0.00% 2.9/sec

@ LIEJ WorkBench
D HTTP Proxy Server

38

-

JAVAPOLIS JAVAPOLIS

Apache JMeter Simple Setup

Setup proxy

Use browser to generate desired traffic
Add in timers

Randomize input

Add in listeners

Configure ThreadGroup properties
Run load test

2 3 3 9 D 2 D

39
: 6

JAVAPOLIS JAVAPOLIS

b

JAVAPOLIS

EANTW

www.javapolis.com

Instructions

o Start up apachejmeter.bat
o We'll skip the proxy setup. Load mixed.jmx JMeter plan

@ Add random delay that ranges between 1 and 4 seconds
between calls for both keyword and wildcard

@ Add in a listener of your choice

© Use 2 threads (concurrent users)
Don’t forget to set the repeat count

@ Run and watch

41
: 6

JAVAPOLIS JAVAPOLIS

CPU. M ,
Hardware ik’ Nework

@ Hardware is our physical constraint
@ If we don’t have enough
Get more

Reduce utilization of what we have
« Strength reduction (algorithms)
* Trade one resource for another
— Caching trades memory for I/O

@ Judge utilization in relation to the task at hand

Reading 1 megabyte from disk should not stress a
modern |/O channel
» Are you really reading 1 meg?

42
: 6

JAVAPOLIS JAVAPOLIS

Measuring Hardware Unix

@ System activity
Maintained in kstat structures by the kernel
Collection of counters
@ Reported on by command line tools
Includes vmstat, mpstat, iostat
Values reported as activity since last call

Provides instantaneous view on how hardware is
coping with load

43
: 6

JAVAPOLIS JAVAPOLIS

Measuring Hardware Windows

o System activity
Maintained in registry
Collection of counters

@ Reported on by taskmgr and perfmon
Graphical windows on system performance
perfmon is configurable

Taskmgr has few configurations

* You can (and should) turn on reporting of system
time (CPU)

44
: 6

JAVAPOLIS JAVAPOLIS

CPU

@ High utilization is easily measurable
« vmstat (Unix) or taskmgr (Windows)
@ Different types of utilization
> Application
> JVM
> System/OS

il .
k. ab-

JAVAPOLIS JAVAPOLIS

Application

o Source

Heavy workload
 Add CPU

Remove processes from machine

Inefficient algorithms
« Use method profiler to identify bottlenecks.
— prof
— hprof
— NetBeans (JFluid)

46
: 6

JAVAPOLIS JAVAPOLIS

Application Profiling

o JVMTI interface
New to 1.5
Combination of old JVMPI and JVMDB interfaces

Supported by —Xrunyourlib:parameters
» Loads yourlib (dll or so)
* |nitializes with parameters

47
: 6

JAVAPOLIS JAVAPOLIS

Application Profiling

s I
e ~\
JVMPI Profiler| /L. Profiler
Front End

< J

- .

JAVAPOLIS JAVAPOLIS

Application Profiling

@ -Xprof
Original execution profiler

Sampling profiler

 Adds 1 to a counter for each method when it is found at the
top of stack

« Timings are inclusive
Reports on a thread bases
Dumps report to screen when thread dies

49
: 6

JAVAPOLIS JAVAPOLIS

Application Profiling

@ -Xrunhprof
Original heap profiler
Extended for thread and execution profiling

Built off of JVMTI interface but no wire protocol

Much more data than prof
» Best viewed with a profiling tool (HPJMeter)

50
: 6

JAVAPOLIS JAVAPOLIS

Java Virtual Machine

@ Heavily threaded (measure with vmstat)
Runnable (r) queue consistently 2x number of CPUs
Stresses scheduler
Introduce thread pooling to limit activity
Reduce number of threads in current pools
@ Java heap management
Monitor gc with —verbose:gc flag
View output with HPJTune

51
: 6

JAVAPOLIS JAVAPOLIS

Operating System

@ Context switching
Threads not completely using quantum
/O
Lock acquisition
Interrupt handling
@ Memory management

non-zero scan rates (sr) for more than a few seconds
at a time
* OS is thrashing

52
: 6

JAVAPOLIS JAVAPOLIS

Operating System

LU Lo CPU U0 Mediry

e Faoe Mo Luags ey

53
‘s

JAVAPOLIS JAVAPOLIS

Memory

@ High utilization is easily measurable
memstat (Unix) or taskmgr (Windows)
Can look like high CPU utilization

@ Real memory

@ Virtual memory
An outdated optimization

@ |deally we want to pin JVM into real memory
Eliminate paging
Reduce memory utilization
Add memory

S 4 11-15 . .

JAVAPOLIS

‘b

JAVAPOLIS

Disk and Network |/O

@ Heavy utilization will most likely prevent application from
fully utilizing CPU
@ Source (iostat)

Reading/writing large data sets or many network calls
» Use counters to calculate rates
» Use I/O channel specs to understand capacity
» For disk, introduce buffering in hardware or application
— E.g. Databases use paging
» For network introduce caching

« Bulk up operations
@ Wrap /O calls with timer

55
: 6

JAVAPOLIS JAVAPOLIS

JDBC Monitoring

@ Common problem is interactions with database
Can measure activity using JDBC interceptor
@ P6Spy looks like a JDBC driver
Logs all JDBC calls
Logs can be viewed with IronEye

56
: 6

JAVAPOLIS JAVAPOLIS

EllonEyeSQL
File View Server Help

l Connect Disconnect Confiy Purge Import Export About .. IRONGRID
Legend [Preparation [J Execution [Retrieval 1]
£ Slowest # MostRun £ Both

Filtering (click to open)

o o _saL o R Count v) Avg Time - Max Time
&4 SELECT LASTUSERID, OIDFIRMA , OIDYEARVALIDFROM , OIDBASEC... 30735 2 a7 A
£ SELECT LASTUSERID , OIDFIRMA , OIDYEARVALIDFROM , OIDBASEC... 30735 2 a7 =
£ SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 30726 2 78
£ SELECT LASTUSERID , OIDCOSTCENTRE , OIDBUDGETCT , CALCU... 1031 10 16
£ SELECT LASTUSERID , OIDCOMPANY , OIDROOT , GROUPTYFE , CO... 228 2 16
£ SELECT LASTUSERID , OIDGROUP , OIDCOSTTYPE , ITEMPOSITION .. 226 2 16
£ SELECT LASTUSERID , OIDPARENT , OIDLANGUAGE , TEXT , OBJEC... 73 1 16
£ SELECT LASTUSERID , OIDGROUP , OIDCOSTCENTRE , ITEMPOSITI... 73 3 16
£ SELECT LASTUSERID , OIDGROUP , OIDCOSTCENTRE , ITEMPOSITI... 73 3 16
£ SELECT LASTUSERID , OIDCOSTTYPE , OIDCOSTCENTREBASE , OB... 73 2 16
SELECT LASTUSERID , OIDCOMPANY , MANAGER , VALIDFROM , VALI... 73 2 16
SELECT LASTUSERID , OIDCOSTCENTRE , CODE , SHORTNAME |, VA... 73 1 16
SELECT LASTUSERID , SETTINGUSER , SETTINGFILE , SETTINGSEC... &1 2 16
SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 54 1 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 54 1 16
SELECT LASTUSERID , OIDBUDGETROWYY , OIDCURRENCY , BALANC... " 54 2 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... " 54 2 16
SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 54 3 16
SELECT LASTUSERID , OIDBUDGETROWYY , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... " 54 3 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROW , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... 54 2 16
SELECT LASTUSERID , OIDBUDGETROWY , OIDCURRENCY , BALANC... " 54 2 16 =
Rows Returned Time Performance Court
SQL Statement Syntax [30,000
OIDACCUMMULATIVECC , ISEXTENDEDAUDIT , - 40 20,000
ISCHANGEABLE , ISAUTOREVALUATION , 20
TARGETCOSTSCIS , CONCURRENTCUCALC, 8 10,000
OBJECTTS , OBJECTID FROM KORESETUP_V 0 omm 0
WHERE (OIDFIRMA = 2) max avg min max avg min no. of executions
é Data loaded from V:\barcelonatlogsivarial pyd.log Not Connected ‘ 57
| |

JAVAPOLIS o - 7 JAVAPOLIS

JAMon 2.2

o Specify JAMon JDBC driver
@ Can be viewed using supplied WAR file

@ To bind it in without code or config changes:
http://www.cretesoft.com/archive/newsletter.do?issue=136

58
: 6

JAVAPOLIS JAVAPOLIS

b

JAVAPOLIS

EANTW

www.javapolis.com

Instructions

@ Make sure Tips is running

@ Use 30 threads (concurrent users)
Don’t forget to set the repeat count

@ Run and watch the hardware

@ What do we see?

@ What do we do next?

60
: 6

JAVAPOLIS JAVAPOLIS

@ |f hardware is able to cope with the load, move to
iInvestigate JVM

® Threading
2 Maybe hints of problem when investigating hardware

= Examine threading with kill =3 or ctrl-break
« Dumps activity to console
» Look for many busy threads

> Control level of threading using thread pooling
 Traffic calming

61

A

u!
N/ 5 X ‘
' 11 -15 DECEMBER B ANTWERP B BELGIUM F

JAVAPOLIS JAVAPOLIS

Java Heap Memory

o Java Virtual Machine C/C++ process
Structure depends upon OS
Shared text
Stack
Heap
« Java Heap allocated from process heap
@ Java object allocated from Java heap space
@ Java heap space managed by garbage collection
Object that are no longer reachable will be collected

Memory that is no longer referenced will be returned
to the free list

62
: 6

JAVAPOLIS JAVAPOLIS

Java Heap Space

@ C struct defines Java object
OOP

Contains references to other object
* Depends on the class declaration

public class A { struct OOP {
public Object x; int refCount;
public Object y; byte *refs;
} } OOP, *OOP;
refs[0] = x;
refs[l] =y

63
: 6

JAVAPOLIS JAVAPOLIS

Java Heap Space

@ Java heap maintains a references to OOP
Reference to all object maintained in OOP table
Root objects are at the top of object graphs
 Define live objects
® QObject not reachable from GC roots will be collected

Three step process known as Mark and Sweep:
» Traverse OOP table and clear mark bit
» Traverse object graphs starting at GC roots and set mark bit
« Sweep across OOP table de-allocating OOP structures

64
: 6

JAVAPOLIS JAVAPOLIS

Mark & Sweep GC

Q0P Table

65

Lol '
Vi

JAVAPOLIS

JAVAPOLIS

Mark & Sweep GC

Q0P Table

o]
L] N
~

JAVAPOLIS

JAVAPOLIS

Mark & Sweep GC

@ Triggered on allocation failure
new Object(); fails
@ Needs exclusive access to all of heap
Cannot share heap with application threads
Concurrency issue known as “stop-the-world” GC
@ Single threaded
@ Must manage entire heap space
Large heaps == long pauses

67
: 6

JAVAPOLIS JAVAPOLIS

Mark & Sweep GC Optimizations

@ When GC runs only 1 CPU is hot
Develop multi-threaded GC algorithms
Still have pause times but hopefully shorter
@ Application pauses
Develop concurrent GC algorithms
Application and GC can run together
Reduced contention == reduced pause time
Higher overhead (ie trading CPU for shorter pause)

68
: 6

JAVAPOLIS JAVAPOLIS

Mark & Sweep GC Optimizations

@ Most Objects live for less than 100 us or for a long time

IBM defines pinned clusters, wilderness (not so
generational)

Sun/HP/JRocket added Generation Spaces

@ (Generational spaces
Choose a different collector for young and old
Collect young first

Collect old only when there will not be enough room
for old objects

69
: 6

JAVAPOLIS JAVAPOLIS

Object Lifespan

Rate

i

g
\I\ 8 i ‘
(- 11-15D [

JAVAPOLIS JAVAPOLIS

Sun Generational Spaces

Young Old

Generation Generation
I | I

"-.:Iirtual Survivor Perm |E;lon-
cap Space Neap
Space Spaces Space

JAVAPOLIS JAVAPOLIS

Generational Spaces

@ Heap sizing

Can size generational spaces using ratios or absolute

sizes
@ -Xmx defines maximum size of entire heap
-XX:MaxNewSize=<N>
-XX:NewRatio

Ratios: 8 for -client and 2 for -server

-XX:SurvivorRatio
-XX:PermSize=<size>
-XX:MaxPermSize=<size>
Old space is what is left over

72
: 6

JAVAPOLIS JAVAPOLIS

> D

2 3 3 I

Survivor Spaces

] New Size
Eden = New Size - *2

Survivor Ratio + 2

€.g. new size = 2M, Survivor ratio = 8
Eden=2M -2M /(8 +2)*2

= 2048K — 204.8K

= 1843.2K
Each Survivor Space = 102.4K

el .
il ob

JAVAPOLIS JAVAPOLIS

Monitoring GC

© -verbose:gc prints one log record for every GC event
-Xloggc:file

® Log entries provides a picture on how
your application is behaving
GC is coping

@ Want to calculate GC throughput

@ Want to find long GC pause times

74
: 6

JAVAPOLIS JAVAPOLIS

GC Throughput

o “Time application is suspended by GC” divided by “total
run time”

@ E.g. 5 minutes of a 20 minute runtime is spent
performing GC

@ 25% efficiency

o GC bottleneck

© Requires many records to calculate
Better tooling

o GCViewer (TagTram)

¢ HPJTune (HP)

75
‘ 6

JAVAPOLIS JAVAPOLIS

Tagtram GCViewer

4 GCYiewer - C:\gcviewer'\gcviewer\doc\normal.gc -0 x|

File View Help

Bl B 200% v [®

[os I [100= I
|
3.000K
0,20s
2.000K |
0,10s e
Acc Pauses 4,26s
1.000K Avg Pause 0,00663s
Min Pause 0,00219s
Max Pause 0,23354s
Total Time 178,96s
— ' Footprint 3.364K
Freed Memory 321.308K
, Freed Mem/Min 107.724K/min
ok 000s || ! L, - Throughput 97,62% 76

B A T T T T ey -

JAVAPOLIS JAVAPOLIS

HP JTune

%" HPjtune - [C:\jacks\tmp\heapilog?2.txt] O] %]
File Help
=|a .|al 2| |
¢ el ErrEten)
Summarvl Heap usage] Durationl Cumulative allocation] Creation ratel Userdeﬂnedl Comparison]
Heap Capacity
Eden Survivor Old Perm Total
Initial INIA INIA NPA NPA 1.938 MB
Final MNIA MNIA NIA INPA 46.938 MB
Utilization A INFA NIA NIA 99.199%
GC Activity Summary
Last occurrence (s) Count Average interval (s) Average duration (s) Average rate of coll...
Scavenge 528.416 (s) 846 0.625 (s) 0.055 (s) 8.185 (MBis)

Overall Statistics

Duration ofthe measurement 528.472 (s) Time spentin GC 46.219 (s)
Total bytes allocated 378 (MB) Percentage oftime in GC 8.746%
Residual bytes 46 (MB) Avg. allocation rate 0.716 (MBfs)
Number of GC events 846 Avg. ideal allocation rate 0.784 (MBis)

[l ers%ince [0% in Full GC GC Full GC

1
Ay
~J
K A

JAVAPOLIS JAVAPOLIS

HP JTune Heap Usage After GC

!
o
5
£
$
«
&
e
3
[u)
8
o
O
m.
bt
p

JAVAPOLIS

JAVAPOLIS

HP JTune Pause Time

JAVAPOLIS o JAVAPDLIS

Heap/GC Tuning

@ Use graphics to decide how to tune memory
Let the user experience to temper your choices
o Strategy: eliminate full GC
Adjust size of total heap and survivor spaces
Tune other parameters as needed
o Strategy: eliminate long pauses
Use Parallel (if multi-cored)
Use concurrent if you can tolerate overhead

80
: 6

JAVAPOLIS JAVAPOLIS

Heap/GC Tuning

@ Tuning GC cannot eliminate
Extremely high rates of churn
Temporal or permanent memory leaks
@ Need to fix the problem in the code
Use a memory profiler to direct your search
@ -Xrunhprof:heap=all
Dumps heap when JVM exits
Dumps with kill -3 or ctrl-break
@ -XX:+HeapDumpOnOutOfMemoryError
New for latest version of 1.6, 1.5, and 1.4

81
: 6

JAVAPOLIS JAVAPOLIS

Heap Dump

@ Contains enough information to reconstruct a picture of
memory

@ Picture contains references to all objects
Dead objects held by OOP table
Live objects

@ Call GC twice before dumping heap

@ Data volume and complexity calls for tooling
HPJMeter

82
‘ 6

JAVAPOLIS JAVAPOLIS

HPJMeter

@ Read hprof dump
Limited to single snapshot
@ Provides rudimentary views of heap
Live object numbers and sizes
Dead objects numbers and sizes
@ Can guess at memory leaks
Single snapshot analysis is limited
Can be good enough if you are methodical
@ Memory leaks usually are found in collections
Strategy: focus on collections

83
: 6

JAVAPOLIS JAVAPOLIS

HPJMeter Live Object View

¥ java.hprof.b BE

92870 BET e
% pads Histogra [Live Objects (Count)
Live Objects (Count)
1,042 {24.9%) javalang String [~
1,026 (24.5%) char[ll]
508 (12.1%) java.lang.Class

315 (7.5%) java.lang.Object[][]
169 (4.0%) java.uti HashMap $Entry
157 (3.8%) java.utilHashtable $Entry
100 (2.4%) java.util LinkedHashMap $Entry
50 (1.2%) java.lanag.String[][]
42 (1.0%) java.netURL
39 (0.9%) java.utilregex Pattern$CharPropertyNames $1
32 (0.8%) java.util.concurrent.ConcurrentHashMap $HashEntnA][] H
32 (0.8%) java.util.concurrent.locks ReentrantLock $NonfairSync
32 (0.8%) java.util.concurrent.ConcurrentHashMap $Segment
30 (0.7%) java.security Provider $EngineDescription
27 (0.6%) java.uti HashMap$Entny][]
27 (0.6%) java.io ExpiringCache$Entry
22 (0.5%) java.util HashMap
20 {0.5%) sun.misc.URLClassPath$JarLoader
19 {0.5%) java.util.concurrent ConcurrentHashMap $HashEntry
19 (0.5%) java.lang.Object
19 (0.5%) java.lang.refFinalizer
19 (0.5%) java.utilLocale

[<]

Double click on a type name to viewy a list of its allocation sites

JAVAPOLIS S - . 7 JAVAPOLIS

HPJMeter Leak Detection

& java.hprof.b BEB
9RO LT e

ds Histogra e Objects (Co [Reference Graph Tree Live Objects (Bytes)

Reference Graph Tree

JNI global ref-= java.lang.Class({sun.reflectFieldAccesson@5000002h {0 bytes)
JNI global ref-= java.lang.Class{sun.misc.NativeSignalHandlen)@5000002¢ {12 hytes)
JNI global ref-= java.lang.Class(java.lang.System)@5000002d {112 bytes) (66,498 held)
super-= java.lang.Class(java.lang.Ohject)y@50000089 (8 hytes)
static in -= java.io.BufferedinputStream@s0000218 (32 bytes) (8,240 held)
static out-= java.io PrintStream@s0000216 (32 hytes) (25,057 held)
out-= java.io.BufferedOutputStream@5000083 (24 hytes)

JNI global ref-= java.lang.Class(ava.lang.LinkageErron@500000d9 (8 bytes) F‘
= |

lock -= java.io.OutputStreamWriter@5000087 (24 hytes)
out-= java.io.OutputStreamWiriter@s0000f37 (24 hytes) H
ch -= char][@50000f3d (16,384 hytes) (16,384 held)
lineSeparator -= java.lang.String@5000018¢ (24 hytes)
charOut -= java.io.OutputStreamWriter@50000f87 (24 bytes)
g:)l static err-= java.io.PrintStream@50000214 (32 hytes) (25,057 held)
static props -= java.util.Properties@50000213 (48 bytes) (8,004 held)
=—| table -= java.uti.Hashtable$Entry[[@50000fa3 (392 hytes) (7,956 held)
- [0] -= java.util. Hashtable$Entry@50000fa4 (24 bytes)
+ key -= java.lang.String@500010a2 (24 bytes) u

EonE OO A

I Leaf [Expanded Here B Expanded Elsewhere B visited Il other

Double click on ohject name to view all references to it

e —

85

JAVAPOLIS JAVAPOLIS

-
-
1
-
a
=

b

JAVAPOLIS

EANTW

www.javapolis.com

Instructions

@ Let’s profile heap with JVM switch —Xrunhprof:heap=all
For fun, add switch —Xloggc:gc.log

@ Restart application server and run JMeter plan

@ Confirm that there is a memory leak with HPJTune
Open gc.log
Look at “Heap Usage After GC”
Look at “GC Duration”

@ Open HPJMeter and find the leak
You may need to shut down everything first

87
: 6

JAVAPOLIS JAVAPOLIS

Application 2

Contention

©@ The only problem left is lock contention
@ Characterized by inability to utilize CPU
Similar to 1/O bound (call to external system)
@ High system time (% of total)
Locks are a kernel resource
@ Find by performing a thread dump (kill -3)
For live lock you may need many thread dumps

@ Techniques to educe lock contention is an emerging
topic

88
‘ 6

JAVAPOLIS JAVAPOLIS

P eOpl e Usage Patterns,

Rates

@ If you haven’t found anything

Re-investigate the people

* Are they really doing what you think they are doing?
* Read logs
« Visit the floor and watch
* Re-do usage patterns
— Compare JMeter scripts with real life
* Re-test

Validate that QA == Production

» Even the smallest difference can hide the problem

89
‘6
JAVAPOLIS

JAVAPOLIS

JoGoSlo Reload

@ |ntroduced Apache JMeter
@ Introduced HPJTune to monitor memory
® Confirmed memory leak hypothesis
Resting the application allowed application to recover

Recovery was tied to HttpSessionState timeout
» Developers were working on persistence framework

@ |solated memory leak to single usage pattern
Filtered off a vast majority of the application
|dentified, fixed and re-tested with-in budget

90
: 6

JAVAPOLIS JAVAPOLIS

Summary

Systems are dynamic, code is static

Be methodical

Review performance requirements

Prepare stress testing environment

Define Usage patterns

Investigate hardware, JVM, and Application

Use measurements from tooling to direct your efforts
Let the user experience guide your decisions

3 D> 3 3 3 3 D D

91
: 6

JAVAPOLIS JAVAPOLIS

JAVAPOLIS

Measure
Don't
Guess

b

JAVAPOLIS

11 - 15 DECEMBER BEANTWERP EBELGIUM

www.javapolis.com

AR

Adobe @ oo of RedHat ORACLE"

